Tetrahedron Letters No. 10, pp 869 - 872, 1977. Pergamon Press. Printed in Great Britain.

STEREOSPECIFIC FORMATION OF CONJUGATED DIENES FROM 3-ALKEN-1-YNES AND ORGANOCUPRATES.APPLICATION IN THE SYNTHESIS OF MYRCENE.

Hans Westmijze , Henk Kleijn , John Meijer and Peter Vermeer.
(Department of Organic Chemistry of the State University ,
Croesestraat 79 , Utrecht ,The Netherlands)

(Received in UK 12 January 1977; accepted for publication 2 February 1977)

Stereospecifically generated vinylcopper(I) compounds are very easily accessible by addition of organoheterocuprates [RCuBr] MgX to 1-alkynes in diethyl ether ^{1,2} or tetrahydrofuran (THF) ³. Also organohomocuprates [RCuR] MgX are suitable reagents for the stereospecific conversion of 1-alkynes into vinylic cuprates in the solvent THF ⁴:

Y = R or Br

X = Cl or Br

Recently it was reported that reactive organometallic compounds such as allyl-zinc , - magnesium, -lithium and saturated lithium compounds undergo addition reactions with conjugated enymes

1 2 3 4 H-C=C-C=C (1) 5. It was found that the organolithium and organomagnesium compounds RM (M = Li or MgX) transferred the R radical to C(4) in 1 , giving rise to 3,4 - and 1,4 - addition products. On the other hand, the organozinc compounds RZnBr added to the triple bond in 1 under introduction of R on C(2) , but generally bis addition products of the type 1 2 3 4 $CH_3-CR_2-C=C$ were formed in considerable amounts also.

Hitherto no report in the literature deals with a study of the behaviour of $\underline{1}$ towards organo-copper(I) compounds.

Enymes like $\underline{1}$ posses two orthogonal π -systems , viz. a 1,3-butadiene system on C(1),C(2),C(3), C(4) and a π -bond on C(1),C(2) .

In principe additions of organocopper(I) reagents to both π - systems are possible: Besides the 1,2 - additions described above also 1,4-additions of organocuprates to C=C-C=C are known 6 .

In order to investigate which π -system is most susceptible for attack by organocuprates, we treated a number of engines $\frac{1}{7}$ with equivalent amounts of [RCuY]MgX (Y = R or Br) $\frac{7}{7}$ in THF.

In all cases we studied only mixtures of the 1,3 -dienes $\underline{3}$ and $\underline{4}$ were isolated after protonolysis of the assumed vinylic cuprates $\underline{2a}$ and $\underline{2b}$:

$$R_{2}^{1} \stackrel{d}{=} \stackrel{3}{=} \stackrel{2}{C} \stackrel{d}{=} \stackrel{d}{C} \stackrel{d}{=} \stackrel{$$

Contrary to what was observed for additions of allylzinc compounds to $\underline{1}$, no products like 1 2 3 4 CH₃-CR₂-C were formed in the organocopper(I) reactions.

The fact that we never found products resulting from 1,4 - and 3,4 - addition , makes formation of $\underline{2a}$ and $\underline{2b}$ by direct attack of the cuprate on the C(1),C(2) $\overline{1}$ -system , which is perpen - dicular to the 1,3 - butadiene system , very likely.

The ratio 3 : 4 appeared to be strongly dependent on the nature of the introduced group R. Adducts 3 were formed almost exclusively (> 95 %) upon interaction of 1 and [RCuy] MgX with R = prim. alkyl.

On the other hand, the formation of $\frac{4}{2}$ competed effectively with that of $\frac{3}{2}$ for R = $\sec c$. or tert. - alkyl.

For instance: Interaction of t - Bu₂CuMgCl with CH₂=C(c-hexyl)-C=C-H gave a mixture of $\underline{3}$ and $\underline{4}$ in a ratio 50: 50, while for the reaction of [i-PrCuBr]MgCl with CH₂=C(CH₃)-C=C-H $\underline{3}$ and $\underline{4}$ were obtained with a ratio 60: 40.

These findings are similar to what we observed for additions of organocuprates to Ph-C=C-H (Compare ref. 3 and 4).

As was observed for other additions of organocopper compounds to C(sp)-C(sp) systems (cf^{1-4}) adducts 2a and 2b (and consequently 3 and 4) were formed stereospecifically by cis - addition of [RCuY] MgX to the C(1)-C(2) triple bond.

For adducts $\underline{4}$ this stereochemistry could easily be concluded from the 3J (H,H) coupling constant (\approx 15 Hz) in the C(1)-C(2) double bond.

In the case of $\frac{3}{3}$ the cis -addition was proved on the base of ${}^3J(C,H)$ coupling constants, e.g. ${}^3J(C^a$, H^b) in $H_2C=C$ $(CH_3)-C$ $(C^aH_2-CH_3)=CD$ (H^b) was 10.3 ± 0.1 , which value is characteristic for a trans orientation of C^a and H^b 8.

The applicability of our method for R =prim.alkyl, can be illustrated by the very simple one-step synthesis of the natural compound Myrcene (6) from (Me₂C=CH-CH₂-CH₂)₂CuMgCl and CH₂=CH-C#C-H (purity of 6 : > 96 %).

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

(Yield : 90 %.)

Further work in this field is in progress. Physical constants and yields of the obtained compounds are compiled in Table :

Starting R ¹	compound 1	R in cuprate	Yields of 3 b	B.p. of $\frac{3}{2}$	n_{D}^{20} of 3	remarks
Н	Me	Et	85	96-98/760	1.4440	С
н	Me	Bu	95	37-38/ 15	1.4490	С
Н	c-Hexyl	Et	88	90-91/ 15	1.4810	С
Ме	Ph	Et	80	52-53/ 0.1	1.5280	đ,e
Me	Ph	Bu	85	70-71/ 0.1	1.5183	đ,e
н	н	>=^	90	50-52/ 15	1.4692	С

872 No. 10

Remarks to the Table.

- a. For the preparation of [RCuBr] MgX and [RCuR] MgX and concentrations of the reactants see references 3 and 4 .
- b. The amount of 4 was \ 5 % .
- c. One equivalent of $\underline{1}$ was reacted during 20 minutes at $-25^{\circ}\mathrm{C}$ with 1.10 equivalent of $\mathrm{R_2CuMgX}$ or $[\mathrm{RCuBr}]\mathrm{MgCl}$. The use of $\mathrm{R_2CuMgX}$.LiBr gave comparable results (compare reference 4). In the reaction of e.g. $[\mathrm{BuCuBr}]\mathrm{MgBr}$ with $\mathrm{CH_2=C(Me)-C\equiv C-H}$ the amount of 4 was 5 10%.
- d. The highest conversion of $\frac{1}{2}$ (80 85 %) was obtained with R₂CuMgCl.2LiBr .
- e. One equivalent of $\underline{1}$ was reacted during two hours with two mole equivalents of $R_2CuMgCl.2LiBr$ at + 20 $^{\circ}C.$

Acknowledgement.

The authors are indebted to T.Spoormaker for measuring ${}^3J({\rm C,H})$ coupling constants. This investigation was supported by the Netherlands Foundation for Chemical Research (SON).

References.

- J.F.Normant and M.Bourgain , Tetrahedron Lett. , 1971 , 2583 .
- 2. J.F.Normant ,G.Cahiez,M.Bourgain,C.Chuit and J.Villieras , Bull. Soc.Chim.Fr.,1974 ,1656.
- 3. H.Westmijze, J.Meijer, H.J.T.Bos and P.Vermeer , Recl. Trav. Chim. Pays-Bas, 95 ,299 (1976).
- 4. H.Westmijze, J.Meijer, H.J.T.Bos and P.Vermeer , Recl. Trav. Chim. Pays-Bas, 95 ,304 (1976).
- 5. D.Mesnard and L.Miginiac , J.Organometal . Chem. 117 , 99 (1976).
- 6. J.F.Normant, G.Cahiez and J.Villieras , J.Organometal.Chem., 92 , C 28 (1975).
- 7. It must be stated that also one mole equivalent of MgBrX was present when the homocuprates R_2 CuMgX were used , which is due to the manner of preparation from 2 RMgX and CuBr.
- 8 U.Vogeli and W.von Philipsborn, Org. Magn. Reson. , 7 , 617 (1975).