STEREOSPECIFIC FORMATION OF CONJUGATED DIENES FROM 3-ALXEN-1-YNES AND ORGANOCUPRATES.APPLICATION IN THE SYNTHESIS OF MYRCBNE.

Hans Westmijse , Henk Kleijn , John Meijer and Peter Vermeer. (Department of Organic Chemistry of the State University , Croesestraat 79 , Utrecht ,The Netherlands)

(Received in UK 12 January 1977; accepted for publication 2 February 1977)

Stereospecifically generated vinylcopper(1) compounds are very easily accessible by addition of *organoheterocuprates* [RCuBr]MgX to 1-alkynes in diethyl ether 1,2 or tetrahydrofuran (THF)³. Also *organohomocuprates* [RCuR]MgX are suitable reagents for the stereospecific conversion of 1-alkynes $\,$ into vinylic cuprates in the solvent THF 4 :

$$
R^{\prime}-C\equiv C-H
$$
 $\left[RCu-Y\right]MgX$ $R^{\prime}-C=C\left\{H\atop R\right\}C=C\left\{Cu-Y\right\}MgX$

$$
Y = R \text{ or } Br
$$

$$
X = Cl \text{ or } Br
$$

Recently it was reported that reactive organometallic compomdssuch as allyl-zinc , - magnesium, -1lthium and saturated lithium compomdsundergo addition reactions with conjugated enynes

1234 н-с=с−с=с√ $C=C$ (1) . It was found that the organolithium and organomagnesium compounds RM ($M = Li$ or MgX) transferred the R radical to C(4) in 1, giving rise to 3,4 - and 1,4 addition products. On the other hand, the organozinc compounds RZnBr added to the triple bond in 1 under introduction of R on $C(2)$, but generally bis addition products of the type 1 2 34, $\text{CH}_{3}-\text{CR}_{2}-\text{C}=C$ were formed in considerable amounts also. Hitherto no report in the literature deals with a study of the behaviour of 1 towards organo-

copper(I) compounds.

Enynes like 1 posses two orthogonal π -systems , $vis.$ a 1,3-butadiene system on C(1), C(2), C(3), $C(4)$ and a \overline{N} -bond on $C(1)$, $C(2)$.

In principe additions of organocopper(I) reagents to both π - systems are possible : Besides the 1,2 - additions described above also 1,4-additions of organocuprates to $\big)C=C-C-C$ are known 6 .

In order to investigate which π -system is most susceptible for attack by organocuprates, we treated a number of enynes 1 with equivalent amounts of [RCuY]MgX (Y = R or Br)⁷ in THF.

In all cases we studied only mixtures of the 1,3 -dienes 3 and 4 were isolated after protonolysis of the assumed vinylic cuprates 2a and 2b :

$$
R_{2}^{14} = H \text{ or } Me
$$
\n
$$
R_{2}^{1} = H \text{ or } Me
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{1}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{Beyl}
$$
\n
$$
R_{2}^{2} = \text{N} - \text{B
$$

Contrary to what was observed for additions of allylzinc compounds to 1 , no products like 1 2 3 4
CH₃-CR₂-C⁻⁻⁻⁻⁻⁻C were formed in the organocopper(I) reactions. The fact that we never found products resulting from $1, 4$ - and $3, 4$ - addition, makes formation of $2a$ and $2b$ by direct attack of the cuprate on the C(1), C(2) \overline{u} -system, which is perpen dicular to the 1,3 - butadiene system, very likely. The ratio $3 : 4$ appeared to be strongly dependent on the nature of the introduced group R. Adducts 3 were formed almost exclusively (\geq 95 %) upon interaction of 1 and [RCuY] MgX with $R = prim.$ alkyl. On the other hand, the formation of $\frac{4}{5}$ competed effectively with that of $\frac{3}{5}$ for R = 8ec. -

or $tert.$ - alkyl.

For instance : Interaction of t - Bu₂CuMgCl with CH₂=C(c-hexyl)-C*C-H gave a mixture of $\frac{3}{2}$ and $\frac{4}{2}$ in a ratio 50 : 50 , while for the reaction of $\left[1-\text{PrCUBr}\right]$ MgCl with $CH_2=CCCH_2$ -C=C-H $\frac{3}{2}$ and $\frac{4}{2}$ were obtained with a ratio 60 : 40. These findings are similar to what we observed for additions of organocuprates to Ph-C=C-H (Compare ref. 3 and 4).

As was observed for other additions of organocopper compounds to C(sp)-C(sp) systems (cf^{1-4}) adducts $2a$ and $2b$ (and consequently 3 and 4) were formed stereospecifically by c is - addition of [RCuY]MgX to the C(1)-C(2) triple bond. For adducts $\underline{4}$ this stereochemistry could easily be concluded from the $\stackrel{3}{J}$ (H,H) coupling constant (\approx 15 Hz) in the C(1)-C(2) double bond. In the case of <u>3</u> the cis -addition was proved on the base of $\frac{3}{J}(C,H)$ coupling constants , e.g. δ_J (c^a , H^b) in H₂C=C (CH₂)-C(c^a H₂-CH₂)=CD(H^b) was 10.3 + 0.1 ,which value is characteristic for a \it{trans} orientation of \it{C}^* and \it{H}^* \it{S} .

The applicability of our method for $R = prim.$ alkyl, can be illustrated by the very simple one-step synthesis of the natural compound Myrcene (6) from ($Me_2C=CH-CH_2-CH_2$)₂CuMgCl and CH₂=CH-C=C-H (purity of 6 : >96 %).

(Yield : 90 %.)

Further work in this field is in progress.Physical constants and yields of the obtained compounds are compiled in Table

Starting R ¹	compound 1 R^2	R in cuprate a ,	Yields of $3b$, $(*)$	B.p. of 3 $^{\circ}$ C/mmHg)	n_D^{20} of ₃	remarks
н	Me	Et	85	96-98/760	1.4440	c
Η	Мe	Bu	95	$37 - 38/15$	1.4490	c
н	c-Hexyl	Et	88	$90 - 91 / 15$	1.4810	Ċ
Me	Ph	Et	80	$52 - 53/0.1$	1.5280	d, e
Me	Ph	Bu	85	$70 - 71/0.1$	1.5183	d, e
H	$\mathbf H$	>≕^	90	$50 - 52/15$	1.4692	c

Remarks to the Table.

- a. **For the preparation of [RCuBr]MgX and [RCuR]MgX and concentrations of the reactants see references 3 and 4** .
- **b.** The amount of 4 was 55 $\frac{1}{3}$.
- **c.** One equivalent of 1 was reacted during 20 minutes at -25° C with 1.10 equivalent of R₂CuMgX or [RCuBr]MgCl . The use of R₂CuMgX.LiBr gave comparable results (compare **reference 4**). In the reaction of e.g. $[BuCuBr]MgBr$ with $CH_2=C(Me)-C\equiv C-H$ the amount **of 4 was S-10%.** -
- **d. The highest conversion of L (80 85 % 1 was obtained with R2CuMgC1.2LiBr .**
- **e. One equivalent of 1. was reacted during two hours with two mole equivalents of** R_2 CuMgCl.2LiBr at + 20 ^OC.

Acknowledgement.

The authors are indebted to T.Spoormaker for measuring ³ J(C,H) coupling constants. This investigation was supported by the Netherlands Foundation for Chemical Research (SON).

References.

- 1. **J.F.Normant and M.Bourgain** , Tetrahedron Lett. , 1971 , 2583.
- **2.** J.F.Normant , G.Cahiez, M. Bourgain, C.Chuit and J.Villieras , Bull. Soc.Chim.Fr., 1974 , 1656.
- **3.** H.Westmijze,J.Meijer,H.J.T.Bos and P.Vermeer , Recl. Trav. Chim. Pays-Bas, 95, 299 (1976).
- **4.** H.Westmijze,J.Meijer,H.J.T.Bos and P.Vermeer , Recl. Trav. Chim. Pays-Bas, 95 ,304 (1976).
- **5. D.Mesnard and L.Miginiac** , **J.Organometal . Chem. 117 , 99** (**1976).**
- **6. J.F.Normant,G.Cahies and J.Villieras , J.Organometal.Chem., 92 , C 28 (1975).**
- **7. It must be stated that also one mole equivalent of MgBrX was present when the homocuprates** R₂CuMgX were used , which is due to the manner of preparation from 2 RMgX and CuBr.
- **8 U.Vogeli and WxonPhilipsborn, Org.Magn.Reson.** , z , **617 (1975).**